Antimicrobial resistance (AMR) is a critical global threat to human, animal and environmental health, exacerbated by horizontal gene transfer (HGT) via mobile genetic elements. This poses significant challenges that have a negative impact on the sustainability of the One Health approach, hindering its long-term viability and effectiveness in addressing the interconnectedness of global health. Recent studies on livestock animals, specifically ruminants, indicate that culturable ruminal bacteria harbour AMR genes with the potential for HGT. However, these studies have focused predominantly on using the faecobiome as a proxy to the rumen microbiome or using easily isolated and culturable bacteria, overlooking the unculturable population. These unculturable microbial groups could have a profound influence on the rumen resistome and AMR dynamics within livestock ecosystems, potentially holding critical insights for advanced understanding of AMR in One Health. In order to address this gap, this review of current research on the burden of AMR in livestock was undertaken, and it is proposed that combined study of the rumen microbiome and faecobiome, termed the ''rumenofaecobiome'', should be performed to enhance understanding of the risks of AMR in ruminant livestock. This review discusses the complexities of the rumen microbiome and the risks of AMR transmission in this microbiome in a One Health context. AMR transmission dynamics and methodologies for assessing the risks of AMR in livestock are summarized, and future considerations for researching the impact of AMR in the rumen microbiome and the implications within the One Health framework are discussed. (c) 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )